The Magazine

Food Riots Made in the USA

There's a better solution to our energy problems than ethanol. It's called nuclear energy.

Apr 28, 2008, Vol. 13, No. 31 • By WILLIAM TUCKER
Widget tooltip
Single Page Print Larger Text Smaller Text Alerts

In fact, the United Nations Food and Agricultural Organization has been screaming the same thing for years, to no avail. World food prices have almost doubled since 2005. There have been "tortilla riots" in Mexico and identical disturbances in Morocco, Egypt, Cote d'Ivoire, Guinea, Mauritania, Cameroon, Senegal, Uzbekistan, and Yemen. True, the rising cost of energy and the perennial defects of Third World food markets are partly to blame. But the International Food Policy Research Institute in Washington says biofuel conversion accounts for at least a fourth of this increase. Even in the United States, milk prices have jumped 50 percent because so much corn is being diverted from cows to gas tanks. C. Ford Runge and Benjamin Senauer, two agricultural experts at the University of Minnesota, predict that by 2025 bio-fuels will be responsible for 600 million more chronically hungry people. Jean Ziegler, a U.N. food expert, labeled biofuels a "crime against humanity" and called for a five-year moratorium. The great ethanol boom is a classic case of putting First World luxuries ahead of Third World necessities.

So how did we get into this mess? It's a matter of energy storage. The world is awash with energy. It is everywhere around us, mostly in the form of that dread word radiation. Radiation is the way energy travels in the universe. The radiation from the sun warms the earth and lights the day in quantities that make people say, "If only we could capture a small portion of that .  .  ." It has been almost the sole source of energy throughout the planet's history (remember that "almost").

The problem is capturing and storing it. Although solar energy is ubiquitous and almost incalculably vast, it is also very dilute. The world, after all, is a very big place. The amount of sunlight landing on a card table that can be converted to electricity is roughly enough to power four 100-watt light bulbs. This means that, if we could capture all the usable solar energy on every rooftop in the country, we would probably have about enough to provide our indoor lighting--except at night, of course, when it's most needed. Still, there's something to be had there, and it is being pursued by the technology of photovoltaics--turning sunlight into electricity.

A better strategy, however, is to find or create stores of solar energy that can be concentrated and used at will. Wind is solar energy nestled in the atmosphere. The sun heats air and sets it in motion, producing kinetic energy that can be transformed into work. Windmills can run mechanical machinery or turn electric turbines--which is why whole mountain ranges are now being decorated with 30-story, propeller-driven structures that look as if they were left there by a race of giants. Hydroelectric dams also store solar energy. The sun evaporates water, which falls and runs downhill. If we back this water up behind a dam, we can access the stored energy at will.

Wood and biofuels are also vaults of stored solar energy. Photosynthetic cells use sunlight to transform carbon dioxide from the atmosphere into long organic molecules. When we burn wood or biofuels, we break these carbon chains and release their "chemical" energy. The same holds true for fossil fuels, which are the highly distilled remains of ancient organisms.

The problem is that, except in the more concentrated form of fossil fuels, stored solar energy remains extremely dilute. Wind, hydro, and all the "alternate" sources of energy have been dubbed "green" because they are supposedly clean, renewable, and sustainable. In fact, what being "green" really means is that they all require vast amounts of land. In the beginning, when "alternate" efforts were still fairly modest, none of this much mattered. As they move up to industrial scale, however, the land requirements become staggering. And land, after all, is also a limited resource.

In a 2007 paper--well on its way to becoming a classic--Jesse Ausubel, director of the program for the human environment at Rockefeller University, calculated the amount of wood it would take to run one standard 1,000-megawatt electrical plant, the kind that can power a city the size of Cincinnati. Feeding the furnace year-round would require a forest of one thousand square miles. We have 600 such coal plants around the country now--to burn wood instead would require a forest the size of Alaska.

Other forms of stored solar energy make comparable demands. Glen Canyon Dam, which can produce 1,000 megawatts of electricity, is backed up by a reservoir 250 miles square (Lake Powell, in Arizona and Utah). That's why we stopped building dams in the 1960s--because they were drowning scenic canyons and displacing populations. (The 16,000-megawatt Three Gorges in China, probably the last major dam that will ever be built in the world, uprooted more than a million people.)